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ABSTRACT

Turbulence plays a key role for forming the complex geometry of the large-scale cur-
rent sheet (CS) and fast energy release in a solar eruption. In this paper, we present
full 3D high-resolution simulations for the process of a moderate Coronal Mass Ejec-
tion (CME) and the thermodynamical evolution of the highly confined CS. Copious
elongated blobs are generated due to tearing and plasmoid instabilities giving rise to a
higher reconnection rate and undergo the splitting, merging and kinking processes in a
more complex way in 3D. A detailed thermodynamical analysis shows that the CS is
mainly heated by adiabatic and numerical viscous terms, and thermal conduction is the
dominant factor that balances the energy inside the CS. Accordingly, the temperature
of the CS reaches to a maximum of about 20 MK and the range of temperatures is
relatively narrow. From the face-on view in the synthetic Atmospheric Imaging As-
sembly 131 Å, the downflowing structures with similar morphology to supra-arcade
downflows are mainly located between the post-flare loops and loop-top, while moving
blobs can extend spikes higher above the loop-top. The downward-moving plasmoids
can keep the twisted magnetic field configuration until the annihilation at the flare
loop-top, indicating that plasmoid reconnection dominates in the lower CS. Meanwhile,
the upward-moving ones turn into turbulent structures before arriving at the bottom
of the CME, implying that turbulent reconnection dominates in the upper CS. The
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spatial distributions of the turbulent energy and anisotropy are addressed, which show
a significant variation in the spectra with height.

Keywords: Magnetohydrodynamical Simulation — Coronal Mass Ejection – Turbulence
– Magnetic reconnection

1. INTRODUCTION

Coronal Mass Ejections (CMEs) are the most energetic events in the solar system, and they cause
major changes of the large-scale magnetic structures in the corona. Various empirical and analytical
models are proposed for the initiation and evolution of CMEs, such as Catastrophe model (Lin &
Forbes 2000; Lin et al. 2001), Breakout model (Antiochos et al. 1999; MacNeice et al. 2004),Titov &
Démoulin (1999) model, Photospheric converging model (Amari et al. 2003; Zhao et al. 2017), Flux
emergence model (Archontis et al. 2004), and Tether-cutting model (Moore et al. 2001; Jiang et al.
2021). In the process of the solar eruption, the closed magnetic field is highly stretched by the loss
of equilibrium and a plate-like reconnection region, namely current sheet (CS), forms between the
two magnetic fields of opposite polarity, and magnetic reconnection (MR) occurs in the CS (Mikic &
Linker 1994; Forbes & Lin 2000; Lin et al. 2002). Therefore, a long CS is always expected to appear
in the major eruption. With one end anchored on the rising flux rope (FR), the CS forms a low
pressure area where both magnetic field and plasma from the background are pushed into the CS,
as reconnection inflows. In other words, the reconnection process in the plate-like CS is externally
driven by the rising FR and the reconnection inflows in the third dimension.
A sufficiently fast reconnection rate is required to support a successful solar eruption (Lin 2002).

The mechanism responsible for driving the fast magnetic reconnection in the CS is an ongoing
research topic. The Sweet-Parker model only describes a slow reconnection with a long and thin
diffusion region (Sweet 1958; Parker 1957), while Petschek model is often used to explain the fast
magnetic reconnection process by introducing a single X-type reconnection region (Petschek 1964).
Furthermore, plasmoid instabilities (Loureiro et al. 2007; Bhattacharjee et al. 2009) and turbulence
(Strauss 1988; Lazarian et al. 2012; Lazarian et al. 2020) play key roles in efficient diffusion in the
reconnecting CS. The linear theory for the tearing mode (Furth et al. 1963) suggests that the CS
becomes unstable to tearing mode as the aspect ratio exceeds 2π. And Shen et al. (2011) suggest
that plasmoid instabilities take place in the solar flares only if the Lundquist number exceeds a
critical value of S ≈ 104. The non-linear instability tears the global CS into many small-scale pieces
with many plasmoids transferring the magnetic energy from large to small scales. At the same time,
merging magnetic islands create an inverse cascade (Fermo et al. 2010). The cascades result in power-
law spectra in the flux and size distributions with indices near -2 (Bárta et al. 2011; Shen et al. 2013).
The well-developed turbulence in the CS is mainly generated by plasmoid instability in 2D, and the
global CS is filled with the diffusion region due to the appearance of plasmoids (Ye et al. 2019; Xie
et al. 2022). However, 3D and 2D turbulence are fundamentally different in the process of MR (Eyink
et al. 2011). The theoretical work of Lazarian & Vishniac (1999) predicts a fast reconnection speed in
the presence of weak turbulence, which is numerically verified in 3D by Kowal et al. (2009). And the
turbulent meandering of magnetic field lines has been shown numerically to induce a strong violation
of magnetic flux freezing (Eyink et al. 2013). It is shown by Kowal et al. (2017, 2020); Beresnyak
(2017) that 3D turbulence develops spontaneously in the reconnection layer, and it is not a collection
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of 2D magnetic loops. Lazarian et al. (2020) also suggest that plasmiod reconnection dominates
in 2D, while turbulent reconnection is more prominent in 3D. On the other hand, Nishida et al.
(2013) made an effort to extend the 2D model of solar flares to a 3D model, and conclude that the
plasmoid-induced reconnection theory is still valid in 3D cases. Dong et al. (2022) recently performed
3D simulations of MHD turbulence at a large magnetic Reynolds number of Rm = 106, and they
provide direct evidence that plasmoids can play a role for forming the turbulent energy spectra with
an index of -2.2. Thus the mechanism of magnetic reconnection in the realistic turbulent CS is still
poorly understood.
Many observations suggest that fragmented and turbulent structures exist to enable the reconnec-

tion in the CME-flare CS (Lin et al. 2007; Liu 2013; Lin et al. 2015; Li et al. 2018; Cheng et al.
2018; Lee et al. 2020). Patel et al. (2020) further accomplish a statistical study of plasmoids in the
CS of the CME eruption on September 10, 2017 using extreme-ultraviolet (EUV) and white-light
coronagraph images. For the same event, Warren et al. (2018) observe the formation and evolution of
the hot CS, consistent with the 2D numerical work of Ye et al. (2020). It has been also observed by
Hanneman & Reeves (2014); Innes et al. (2014); Cai et al. (2019) that a distributed plasma structure
of about 10 MK, namely supra-arcade fan (SAF), exists above the post-flare loops. And the motion
of supra-arcade downflows (SADs) contributes significantly to the plasma heating of the SAF (Reeves
et al. 2017; Samanta et al. 2019). The formation of the SAF and the SAD were recently shown to
be related to the turbulent region above the flare loops by simulations (Cai et al. 2021; Shen et al.
2022; Ruan et al. 2023). Additionally, Mei et al. (2017) compared the 3D CS formed during the
FR eruption with that in 2D models, which are very similar in the planar cut view, but they only
considered an isothermal solar atmosphere. Reeves et al. (2019) investigate the plasma heating in
the CS using 3D simulations considering thermal conduction and radiative cooling mechanisms, but
the eruption is not very energetic, with maximum plasma temperatures about only ∼ 3 − 5 MK.
However, the direct numerical study on thermodynamics of the large-scale CS and plasmoids in 3D
CMEs are still limited.
In this paper, we perform full 3D MHD simulations based on Titov & Démoulin (1999) model to

study the CME-driven reconnection process. Adaptive mesh refinement (AMR) is utilized to achieve
the high resolution grid around the 3D CS, in order to capture the evolution of fine structure within.
In section 2, the analytical solution for the initial configuration and numerical setups are described.
Section 3 shows the numerical results of the global and local evolution. Lastly, we give the discussion
and conclusions in Section 4.

2. NUMERICAL DESCRIPTION
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The governing MHD equations used in our simulations are described in Cartesian geometry as
follows:

∂ρ

∂t
+∇ · (ρv) = 0 (1)

∂e

∂t
+∇ · [(e+ P ∗)v− (v ·B)B]

= ρg · v+∇ · [ηB× (∇×B)− FC ] (2)

∂(ρv)

∂t
+∇ · [ρvv−BB+ P ∗I] = ρg (3)

∂B

∂t
= ∇× (v×B− η∇×B) (4)

P ∗ = P +
B ·B
2

(5)

P = ρT (6)

where ρ is the plasma mass density, v is the flow velocity, P is the thermal pressure, η is the magnetic
resistivity, B and B̂ are the magnetic field and the associated unit vector, γ = 5/3 is the ratio of
specific heats, g is the gravitational acceleration, and e = P/(γ − 1) + ρv2/2 +B ·B/2 is the total
energy density. The Spitzer model for thermal conduction (Spitzer 1962) is included in Eq.(2) in the
form of FC = −κ||(∇T · B̂)B̂ − κ⊥(∇T − (∇T · B̂)B̂). The parallel and perpendicular coefficients
κ||, κ⊥ are the same as given in Ye et al. (2021). Particularly, thermal conduction must saturate
as the temperature gradient becomes too large, and the heat flux is limited to the saturated flux
of Cowie & McKee (1977) (See Appendix). All variables presented here are dimensionless. The
normalization units are L0 = 5× 109 cm, n0 = 1010 cm−3 and T0 = 106 K for length, number density
and temperature, respectively. Thus, we have the characteristic values ρ0 = 1.673 × 10−14g cm−3,
B0 = 5.89 G, P0 = 2.76 g cm−1s−2, vA = 128.5 km s−1 and t0 = 389.15 s for mass density, magnetic
strength, gas pressure, velocity and time. To complete the equations, the divergence-free condition
(∇ ·B = 0) needs to be satisfied at any evolution time.
The gravitational acceleration deceases with the height along the z-axis, given in the dimensionless

form by g = −ρ0L0/P0g0ẑ/(1+zL0/R⊙)
2. Here, we have the gravitational acceleration constant near

the solar surface g0 = 2.74× 104 cm s−2, the solar radius R⊙ = 6.961× 1010 cm, and the unit vector
ẑ in z-direction. In order to hold naturally the line-tied condition at the bottom of the simulation
box, we adopted a two-layer gravitationally stratified atmosphere including the chromosphere and
the corona. The initial temperature distribution is given simply by

T (z) =

{
Tchr, for 0 ≤ z ≤ hchr,

Tcor, for z > hchr,
(7)

where Tchr = 0.01 is the chromosphere temperature, Tcor = 1 is the corona temperature, and hchr =
0.4 is the top of the chromosphere. We note that the initial temperature distribution is not continuous
at the low altitude. The thermal conduction could change the gravitationally stratified layer once
the simulations start. Since the associated conduction time at the low layer is much longer than the
simulation time, the plasma evolution in higher coronal regions won’t be significantly affected in the
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later phases. Then we have the associated gas pressure distribution due to hydrostatic equilibrium:

P (z) =


pchr exp

[
1

λTchr

−z

1 + zL0/R⊙

]
, for 0 ≤ z ≤ hchr,

pcor exp

[
1

λTcor

(−z + hchr)

(1 + zL0/R⊙)(1 + hchrL0/R⊙)

]
, for z > hchr,

(8)

with

pchr = pcor exp

[
1

λTchr

hchr

1 + hchrL0/R⊙

]
, λ =

2kBT0

mHg0L0

. (9)

Here, kB = 1.38× 10−23erg K−1 is the Boltzmann constant, mH = 1.67× 10−24 g is the mass of the
hydrogen atom, and pcor is the gas pressure set at the height z = hchr.
The initial magnetic configuration is similar to the T & D model (Titov & Démoulin 1999; Török

et al. 2004), which consists of three components. The first component, denoted by BI , comes from a
pre-existing flux rope of major radius R, carrying a uniformly distributed ring current I of a minor
radius a. The second one, denoted by Bq, is created by a pair of magnetic sources with the distance
L at the depth z = −d1 under the photosphere (z = 0). The two sources of charge ±q1 are located
symmetrically to the axis of the ring to mimic the active region. The detailed formulae for BI and
Bq can refer to Titov & Démoulin (1999). The third one, denoted by Bt, represents a dipole source
of strength q2 buried at z = −d2 at the origin of xy-plane, in order to allow the magnetic strength to
decay with the square of the height. Following the work by Mei et al. (2020), the associated magnetic
potential vector reads as

At =
q2

(x2 + y2 + (z + d2)2)3/2

 z + d2

0

−x

 (10)

On the assumption of a thin enough flux rope (i.e. a << R), we can treat the global and internal
equilibrium almost independently (Isenberg et al. 1993) . The global equilibrium in an axisymmetric
system is reduced to the balance between the Lorentz Forces caused by the curvature of the tube axis
and interaction of the background magnetic field Bq at the given strength ±q0 with the ring current
I, which gives the equilibrium current

I =
8πq0LR(R2 + L2)−3/2

ln(8R/a)− 5/4
. (11)

Since this work mainly focuses on the detailed evolution after the major eruption, we start the
simulation from a non-equilibrium state by setting q1 = 0.7q0, in order to have an immediate eruption.
On the other hand, the internal equilibrium of the flux rope is realized by the balance between the

inward force from the poloidal magnetic field and the outward force from the thermal pressure and
magnetic pressure from the toroidal field (Mei et al. 2018). Hence, we have the explicit expression
for the gas pressure within the flux rope:

P = Pm + (1− α)
I2

4π2a2

(
1− r2a

a2

)
, for ra ≤ a, (12)

with
ra =

√
x2 + (r⊥ −R)2,

r⊥ =
√

y2 + (z − d1)2.
(13)
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Note that α is the ratio of the thermal pressure to magnetic pressure, and Pm denotes the background
pressure obtained from Eq.(8). Reusing the symbol of the line current I0 in Titov & Démoulin (1999),
the internal toroidal field can be written as

Bt =
I0
2π

[√
2αI2

a2I20

(
1− r2a

a2

)
+

1

R2
+
√
y2 + (z + d1)2 −

1

R

]
, ra ≤ a. (14)

In this way, we only need to adjust the value of I0 to make the external field derived from Eq.(10)
and the internal field of Eq.(14) the same at the surface of the flux rope (Mei et al. 2018). In
addition, the flux rope is supposed to carry the cold plasma from the chromosphere (Mackay & van
Ballegooijen 2009), so the temperature within is set to T = 0.02 for ra ≤ a. Therefore, the initial
density distribution is eventually obtained by Eq.(6).
The simulation box is defined in 3D as (x, y, z) ∈ [−4, 4] × [−4, 4] × [0, 12], and the root grid size

is 80 × 80 × 120. For the study of 3D small-scale structures in the CS, it is necessary to carry out
the appropriate mesh refinement techniques to save computational sources. Practically, the static
mesh refinement (SMR) of maximally 3 levels is utilized before the computation starts: level 1 for
(x, y, z) ∈ [−0.8, 0.8] × [−1.6, 1.6] × [0, 5], level 2 for (x, y, z) ∈ [−0.4, 0.4] × [−0.8, 0.8] × [0, 4.5],
level 3 for (x, y, z) ∈ [−0.2, 0.2] × [−0.6, 0.6] × [0.5, 4]. And the adaptive mesh refinement (AMR)
of 5 levels is activated in the region of [−0.4, 0.4] × [−0.5, 0.5] × [0.5, 5] around the CS for t ≥ 0.4
and the finest cell size corresponds to a physical length of 156.25 km. The essential parameters for
our model are given as L = 0.4, R = 1.2, a = 0.2, d1 = 0.1, d2 = 1.2, q0 = 40.75, q2 = 2.92
and α = 0.997. The gas pressure at z = hchr is pcor = 1, which gives the plasma β ≈ 0.15 at the
bottom of the corona. The normalized resistivity is set as η = 10−5, resulting in a diffusion coefficient
ηc = ηL0vA = 6.425× 1011 cm2s−1 in cgs units.
The boundary conditions included are similar to the 2D case of Ye et al. (2021). That is the line-tied

condition at the bottom boundary z = 0 formalized by Shen et al. (2018), while the open conditions
are used for the other 5 boundaries allowing the plasma to enter or exit freely the simulation box. The
full 3D simulations are performed by the MPI-parallelized AMR code “MPI-AMRVAC” (Keppens
et al. 2012; Xia et al. 2018) using the Godunov style finite volume method in general. Additionally,
we choose the Harten-Lax-van Leer approximate Riemann solver (Harten 1983) together with a
third-order asymmetric flux limiter (Koren 1993) to capture the shock structures and a three-step
Runge-Kutta time solver. The anisotropic heat flux is solved by the SuperTimeStepping method
(Meyer et al. 2012). We have completed two runs with and without thermal conduction as listed in
table 1. The Appendix shows that the temperature distribution for Run A is much overestimated
(larger than 100 MK) leading to the very low density inside the CS, while the distributions for Run
B are more consistent with observations. Conduction is a dominant factor that balances the energy
inside the CS. It also turns out, from our simulations, that Run B shows the large-scale CS with
more flux tube structures appearing than Run A. In order to better study the turbulent features of
the CS, the detailed analyses in the next section are all based on the results from Run B.

Table 1. Simulation parameters for Run A and B.

root grid AMR levels Thermal conduction

Run A 80× 80× 120 5 No

Run B 80× 80× 120 5 Yes
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To compare with observations, the synthetic extreme ultraviolet (EUV) emissions are produced
by the forward modeling code FoMo (v3.4, Van Doorsselaere et al. (2016)), taking into account
contribution functions from the CHIANTI atomic database (Del Zanna et al. 2015). The spatial
resolution of the EUV images is the same as the observations, with a pixel corresponding to 435 km
at 131 Å passband.

3. SIMULATION RESULTS

3.1. Global evolution

Figure 1 shows the formation and multi-scale processes of the CS by the current isosurface |J | = 50
following the erupted flux rope (FR) in 3D configurations. A close-up look for the detailed dynamical
evolution in the CS is presented in the corresponding animation from t = 0 to t = 2.2. We roughly
calculate the effective resistivity ηe = Vinδ to be about at 2.38 × 1014 cm2s−1 at t = 1.42, where
δ ≈ 4.7 × 107 cm is the minimum full width of the CS, and Vin ≈ 50.7 km/s is the reconnection
inflow velocity near the middle of the CS. Then the resulting Lundquist number is estimated by
S = LcVc/ηe ≈ 1.5 × 104, with Lc ≈ 2RL0 = 1.2 × 1010 cm the characteristic FR length and
Vc ≈ 2904.1 km/s the Alfvén velocity near the magnetic sources. This indicates that the use of the
computational grid in our simulations is fine enough to trigger plasmoid instabilities shown by the
small flux tubes in the CS. Panel (a) displays the pre-existing filament carrying the ring current and
no CS is formed at the beginning. At t = 0.52 in panel (b), the CS fan between the flare and FR is
well built up and the first plasmoid marked by the red box appears. The flux tube-like structures of
the plasmoid are locally constructed by the twisted field lines. Then at t = 0.96 in panel (c), the CS
is extremely stretched in the middle, and the field lines of the FR crossing the z-axis evolve into a
clockwise rotation. At this time, the buffer region under the FR seems more turbulent than the CS,
which has only a few blobs near its flanks. Later at t = 1.42 in panel (d), blobs continue to appear
simultaneously close to the flare loop-top and undergo merging or splitting, which makes the internal
CS structures quite chaotic. One can find also that the field lines of the FR in the middle rotate at
a significant angle with respect to the yz-plane, which forms a complex geometry of the CS instead
of a flat sheet. Lastly at t = 2.0 in panel (e), the general CS system becomes completely turbulent
at higher altitudes.
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(a) t = 0 (b) t = 0.52

(c) t = 0.96 (d) t = 1.42 (e) t = 2.0

Figure 1. Snapshots of the global evolution of current density and magnetic fields at different times. The
structures of the current sheet are shown by the current isosurface with value |J | = 50 in white. The blue
solid lines are magnetic fields crossing the z-axis. The colors are used in the right panel in (b) for the better
visualization of different magnetic fields for the first plasmoid marked in the red box in the left panel. An
animation of the detailed evolution inside the 3D CS is available for the entire simulation time.

In Figure 2, we plot the spatio-temporal diagram along the z-axis passing the origin using the
highest level 5 of AMR, in order to follow the detailed evolution of the CS driven by the ejected FR.
In panel (a), one can easily distinguish the fast shock by the shape change and the FR of denser
material from the distribution of density in height. The principal X-line (PX), where magnetic
reconnection takes place the fastest, is located always close to the lower tip of the CS, causing the
energy partition asymmetric. As we can see, the FR undergoes an acceleration phase for t ≲ 0.52
and then moves upward with a speed of about 338.5± 12.8 km/s. Many blobs seen as fluctuations in
density are generated due to instabilities in the CS, and propagate bi-directionally. The reconnection
upflows collide with the FR to form a dense buffer region underneath. Unlike the 2D work of Shen
et al. (2011); Ye et al. (2019), structures that appear as separate plasmoids might actually be 2D
projections of turbulent structures. In panel (b), a pair of termination shocks (TS) are formed above
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the flare loops and under the FR with the average upstream velocity of about 1028 km/s. Particularly,
the 3D interface of TS resembles a thin and long ribbon above the flare loops in our simulation. From
panel (c) and (d), one can see apparent oscillations both in the x- and y-directions inside the CS
and at the location of TSs from the time when blobs appear, unlike the 2D work of Takahashi et al.
(2017).

(a) (b)

(c) (d)

Figure 2. Time evolution of the CS along the z-axis passing the origin. (a) Mass density in log-scale; (b)
velocity in the z-direction; (c) velocity in the x-direction; (d) velocity in the y-direction. The solid black
line in (a) stands for the PX line.

By integrating the dimensionless energy equation over the volume V and applying the divergence
theorem, we have∫

V

∂

∂t
(E +K +W)dV =

∫
V

ρv · gdV −
∫
S

[
(
γP

γ − 1
+

ρv2

2
)v+ E×B+ FC

]
· dS, (15)

where E , K, W are the thermal, kinetic and magnetic energy densities, respectively. Note that
E = ηJ−v×B is the electric field. The variations of magnetic , kinetic and thermal energies ∆EM ,
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∆EK , ∆EI in the entire simulation domain are given by,

∆EM = EM(t)− EM(0) +

∫ t

0

∫
S

E×B · dSdt (16)

∆EK = EK(t)− EK(0)−
∫ t

0

∫
V

ρv · gdV dt+

∫ t

0

∫
S

(
ρv2

2

)
v · dSdt (17)

∆EI = EI(t)− EI(0) +

∫ t

0

∫
S

[
(
γP

γ − 1
)v+ FC

]
· dSdt (18)

Since we are mainly interested in the energy change in the corona and want to reduce the influence
from the imperfect handling of the lie-tied condition at the bottom, the above integrals are only
calculated for the height z ≥ 0.5. Figure 3 shows the time evolution of total magnetic, kinetic and
thermal energy variations in the corona, calculated from the data of the AMR level 1. The magnetic
energy declines gradually as magnetic reconnection proceeds. And the kinetic energy transferred from
the magnetic energy dominates during the entire simulation time, and gradually accumulates and
saturates. The generated thermal energy manifests in a piecewise linear phase with the steeper slope
after t ≈ 0.52, corresponding to the end of the acceleration phase. The error on the global energy
diagnostic, estimated by the loss of the initial total energy [∆EM(t) + ∆EK(t) + ∆EI(t)]/[EM(0) +
EI(0)], remains smaller than 4% overall. Although 5 AMR levels are utilized in our simulations, the
error is computed from the data of the AMR level 1 to save the computational time. Hence, it only
gives an upper limit of the numerical error, the actual error could be even smaller, indicating that
the simulation runs are quite accurate to respect the energy conservation law. However, some of the
total energy is lost due to numerical dissipation.

Figure 3. Time evolution of the variations in total magnetic, kinetic and thermal energies in the corona
(in dimensionless units). The red dash-dotted line is the error on the total energy estimated by [∆EM (t) +
∆EK(t) + ∆EI(t)]/[EM (0) + EI(0)]

Regarding the magnetic reconnection process, we calculated the reconnection rate by estimating
the Alfvénic Mach number in the inflow region near the PX-line in the 3D configuration (Forbes &
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Lin 2000; Jiang et al. 2021). To do so, we compute the global rate from the average inflow velocity
and the Alfvén speed, and the maximum rate along the PX-line. In Figure 4(a), we present the global
and maximum rates for time t ≥ 0.2, when the sheet-like CS is well formed between the CME and
the flare. As we can see, the global rate decreases in the impulsive phase (uniform stage) for t < 0.5
and then oscillates and decays at the same time (nonuniform stage), which is consistent with the
observation work of Song et al. (2018). In the first stage, the reconnection process is externally driven
by the FR motion, resulting in a large reconnection rate greater than 0.1 at the very beginning. Later
in the second stage, the self-organized plasmoid or turbulent reconnection might play a competing
role causing peaks in the reconnection rates. The global and maximum rates are close for t < 0.5,
indicating that it is in the linear phase with almost the same magnitude, while they deviate from
each other for t ≥ 0.5 because of the appearance of plasmoids. In Figure 4(b), we plot also the
local reconnection rate at each PX-point along the y-axis at times t = 0.52 and 1.42. At t = 0.52,
the reconnection rate greatly increases between y=-0.18 and y=0.18, where the first plasmoid is just
generated (See Figure 8). At t = 1.42, the CS becomes very turbulent with the appearance of many
plasmoids, and the rate is enhanced along the PX-line by different amplitudes depending on the
location of these plasmoids (See also Figure 8). In other words, every PX-point along the PX-line
can have a different reconnection rate, and turbulence normally brings in a higher rate in local area
for a given time.

Figure 4. (a) Magnetic reconnection rates as a function of time; (b) Local reconnection rates along the
y-axis at times t = 0.52 and 1.42. Vertical dashed lines in panel (a) mark two selected moments for plots in
panel (b).

3.2. Fine structures and processes of the CS

In this section, we will focus on the small-scale fine structures in the 3D CS formed during the
solar eruption. For instance, one can see that the global CS layers have already turned into the very
turbulent state at t = 1.42 in Figure 1. At this time, we display the planar cuts of different parameters
in Figure 5. Panel (a) presents the distributions of the current density, divergence and velocity curl
on the vertical slice at the center (y = 0). The CS below the PX-point stays extremely thin due to
the high pressure nearby, and the magnetic field displays a Sweet-Parker configuration. Meanwhile,
the magnetic field above the PX-point forms the ’W’ shape and the plasma flow presents a classical
Petschek configuration with a pair of the slow-mode shocks (SSs). The existence of plasmoids thickens
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the local CS width and makes the reconnection process even more complex. By following the work
of Wang et al. (2009), the divergence and the curl of velocity are useful information for identifying
the location of fast-mode shocks (FSs) and SSs, respectively. One can notice particularly that a pair
of TSs form the valleys of the plasma at the tips of the CS, where the divergence takes the minimum
value. The strong compression of the plasma occurs at the location of the TSs, and the interface
of the upper TS is much larger than the lower one. Also , SSs are generated from the PX-point
and propagate bi-directionally along the field lines, which can be identified from Rankine-Hugoniot
relations (Shiota et al. 2005; Mei et al. 2020). Notice that the flare loop-top and the buffer region
under the FR are full of the SSs, which are the important contributors to the local plasma heating.
Figure 5(b) displays the horizontal slices of the current density at different heights of the CS. As
we can see, the two ends of the CS in the xy-plane are connected to the arms of the FR. At the
low altitudes of the CS at z = 1.1 and z = 1.3, the thickness of the CS is very thin, but it can
be broadened locally by the existence of the blobs. At the high altitudes at z = 1.8 and z = 2.2,
the thickness of the CS is larger and becomes very nonuniform in the y-direction. Lastly in the
buffer region at z = 3, the CS is extremely disrupted by the turbulence, which is triggered by the
Rayleigh-Taylor instability suggested by Xie et al. (2022). From lower to higher position, the fan of
the CS becomes more and more tilted and forms an inverse ’S’ structure for the upper CS due to the
global deflection of FR during the eruption.
In order to understand how the plasma is heated in the CS, we rewrite the energy equation as:

∂T

∂t
= −v · ∇T − (γ − 1)T∇ · v+

γ − 1

ρ
(−∇ · FC + ηJ2), (19)

where the terms −v · ∇T and −(γ − 1)T∇ · v are the advection and adiabatic terms, −∇ · FC is
the thermal conduction term, and ηJ2 is the ohmic heating term. The density, temperature and
different heating terms on the xz-plane at the center (y = 0) are shown in Figure 6. Here, the
calculations are based on the data of the AMR level 5, and the sampling period is 0.02t0. At the
early time t = 0.52, the density and temperature distributions show a clear Y-structure above the
flare loops, and the hot dense CS becomes extremely thin. The adiabatic term is primarily positive
inside the CS due to compression of the plasma by the strong reconnection inflows, except for its
upper end. The ohmic heating is at least two orders smaller than the adiabatic one, and conduction
is a dominating contributor against the other heating terms in the CS, at the flare loop-top and
around the CME bubble. At t = 0.96, more plasma accumulates in the upflow region to make the
upper CS width larger, where the density and temperature distributions become quite smooth. The
adiabatic term is only large in the lower CS and at two ends of the global CS due to the compression
by TSs. The ohmic heating term is most important in the lower CS. Thermal conduction spreads
the temperature out of the CS and produces a “thermal halo” around it (Seaton & Forbes 2009).
This can be seen in the hot temperature structure, which is much wider than the dense region at the
same location. Later at t = 1.42 and 1.64, the CS becomes long and thin, stretched by the rising
FR, and many hot and dense plasmoids or blobs can be seen therein. At these times, the adiabatic
and thermal conduction terms fragment into small pieces. From the density distribution, one can see
the tuning fork structures formed above the flare loops and at bottom of the CME with two arms
highly compressed, where the adiabatic and conduction effects are still significant. The ohmic term
remains ignorable compared with other heating terms. We note that the conduction term is strongly
concentrated in regions with high temperature gradients, indicating that the AMR resolves these
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regions. For instance, the thin heating regions at t = 0.96 at z = 1.5 are resolved into 52 grid cells by
AMR. As discussed in Figure 3, the total energy is lost due to numerical dissipation in terms of the
viscous heating. In order to quantify the loss of energy, the numerical kinematic viscosity coefficient
due to the upwinding scheme as Reeves et al. (2019) is estimated with the equation

νN =
∑
i,j,k

vi∆xi

2
(1− vi

∆t

∆xi

), (20)

where ∆xi is the grid spacing for the ith dimension, i.e. (∆x,∆y,∆z), vi is the plasma velocity in
the cell in the ith dimension, and ∆t is the time step in the code. Then the excess viscous heating
produced by the numerical diffusion reads as

Hnvisc = ρνN

[
1

2
eijeij −

2

3
(∇ · v)2

]
, (21)

where eij is the rate-of-strain tensor. On the other hand, we roughly measure the kinematic viscous
coefficient νm by adding the numeric term (γ − 1)Hnvisc/ρ into the right side of Eq.(19) as follows:

νm =
|dT
dt

+ v · ∇T + (γ − 1)T∇ · v− γ−1
ρ
(−∇ · FC + ηJ2)|

(γ − 1)
[
1
2
eijeij − 2

3
(∇ · v)2

] . (22)

For comparison, νN and νm are averaged over the region with (x, z) ∈ [−0.2, 0.2] × [0.5, 3.5] for
t = 1.42 and 1.64 in Figure 6 to suppress the unnecessary errors, which both give the value close
to 0.0035. This confirms that Eq.(20) is a reliable way to quantify the numerical diffusion. Figure
7 plots the density, temperature, together with the heating terms along the central line (x = 0) in
Figure 6. The ohmic term is multiplied by 10 to be visible. Here, we also plot the numerical viscous
heating. At t = 0.52, the density peaks at the core of the CME and the CS length is short. The
temperature in the CS reaches over 20 MK and is highest at the upper end. The dT/dt is mostly
negative in the CS, but it becomes positive and relatively strong near the upper end of the CS,
indicating strong heating at the CME bottom. The numerical diffusion is shown to be generally
greater than the ohmic term with the two peaks at the ends of the CS. The adiabatic term at this
time is the main contributor for heating in the CS. Conduction is the dominating factor that cools
the lower half CS and transfers the heat to the bottom of the CME. Advection plays a similar role
to conduction but with the magnitude much smaller. At t = 0.96, the CS is stretched longer by
the rising FR and the super hot structure (> 10 MK) concentrates only in the lower CS between
z = 0.8 and z = 1.1. All heating terms including the numerical diffusion behave similarly as the
previous time except that they are more smooth in the upper CS for z > 1.1. At t = 1.42 and
1.64, the CS enters the fragmented and fully turbulent phase due to plasmoid instability (Shen et al.
2011; Ye et al. 2019). The temperature of the CS reaches 17.5 MK and the range of temperatures is
relatively narrow as observed in Warren et al. (2018). The hot and dense plasmoids or blobs start
to disrupt the distributions of the density and temperature in the CS. The numerical diffusion has
become significant due to the large local velocity or velocity changes produced by the instabilities in
the CS, indicating a higher viscous heating rate around the plasmoids or blobs. The adiabatic term
remains mostly positive in the lower half of CS due to the strong compression by the reconnection
inflows. And the advection term mainly plays a role for cooling the plasma against the adiabatic
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term. Thermal conduction serves to smooth out the temperature distribution along the CS, and the
large magnitude of this term is mainly located in the lower half CS. It implies that substantial heat
is conducted to the lower end of the CS to make the flare loops hotter rather than the CME.

(a) Vertical slices at the center y = 0

(b) Horizontal slices at different heights

Figure 5. (a) Distributions of the current density |J |, divergence ∇ · V⃗ and velocity curl |∇ × V⃗ | on the
xz-plane at t = 1.42. (b) Current density on the xy-plane at different heights. The black solid lines in the
current density distribution in panel (a) are the magnetic field and the yellow cross ‘X’ therein shows the
PX-point on this slice.
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Figure 6. Log of density (first column), temperature (second column), adiabatic term (third column),
ohmic heating (fourth column) and thermal conduction (fifth column) for the xz-plane at the center (y = 0)
at different times. Note that the contribution from adiabatic, ohmic heating and thermal conduction is
shown in cgs units for better understanding the plasma heating process in the current sheet.



16 Ye et al.

Figure 7. Plots of quantities along the central line (x=0) in Figure 6 at the same times as in this figure:
density and temperature (first row), heating terms and change in the temperature (dT/dt) and heat transport
terms. The vertical dashed lines mark the current sheet ends.

We present the face-on view of the region of interest including the flare and a part of CS at the center
plane (x=0) for selected times in Figure 8. The physical quantities shown are averaged along the line
of sight (LOS) for the length of x ∈ [−0.1, 0.1]. For the early stage of the eruption at t = 0.52, the
first plasmoid just appears and the reconnection outflows are closely uniform. The y- and z-direction
velocity fields oscillate slightly in the region under the FR rather than the loop-top region. The flare
structure in the synthetic AIA 131Å map is smooth, while the CS shows a cavity inside due to the low
density region formed by the reconnection inflows. Later at t = 0.96, the current distribution at the
flare loop-top becomes turbulent, where oppositely directed plasma outflows appear. Unlike the 2D
cases (Ye et al. 2019, 2020), the reconnection outflows in 3D are not only along the flare arcades in the
xz-plane, but also have the apparent movement in y-direction. The mixture of negative and positive
velocities in the y- and z-directions at the interface region of the strong electric current indicates that
turbulent reconnection may readily occur. Accordingly in the channel of AIA 131Å, the finger-like
structures, known as SADs, can be observed between the post-flare loops and the loop-top, which
are formed due to the Rayleigh-Taylor or Richtmyer-Meshkov instabilities (Shen et al. 2022). Then
at t = 1.42, the reconnection engages into the nonlinear phase with highly nonuniform velocity field
in the CS. One can easily recognize the blobs in different flux tube substructures from the current
distribution in the CS, and the velocity distribution of each blob can be also different. If one blob
particularly has both negative and positive values of Vz, the splitting process occurs, which cannot
be seen in 2D cases (Ye et al. 2019; Zhang et al. 2022). In the AIA 131Å image, the height of SADs
increases with the accumulated flare arcade, and the moving blobs are slightly brighter than the
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background CS fan, which might extend the spikes of SADs to a higher place above the loop-top.
From the first column of this figure, one can see that the PX position is never at the same height
along the y-axis, especially that the complex structures of blobs can strongly disrupt the primary
reconnection sites.
Furthermore, we study the turbulence amplitudes in space by estimating the turbulent kinetic and

magnetic energy densities at different times. The velocity and magnetic fluctuations δV and δB are
defined as, respectively,

δV (t, x, y, z)2 = (Vx(t, x, y, z)− ⟨Vx⟩(t, x, z))2

+(Vy(t, x, y, z)− ⟨Vy⟩(t, x, z))2

+(Vz(t, x, y, z)− ⟨Vz⟩(t, x, z))2, (23)

and

δB2 = (Bx − ⟨Bx⟩)2 + (By − ⟨By⟩)2 + (Bz − ⟨Bz⟩)2, (24)

where ⟨·⟩ is taken as the average value in the y-direction for the region of interest. Particularly, we
choose here to compute the average value for a physical quantity over the length for y ∈ [−0.2, 0.2].
Then the turbulent kinetic energy density is given by < ρ >< δV >2 /2, and the turbulent magnetic
energy density is < δB >2 /2. Figure 9 shows the spatial distributions of the corresponding turbulent
energy densities at different times. At t = 0.96, the turbulent component of kinetic energy generally
dominates over that of magnetic energy in the CS except the region very close to the PX-line (see
Figure 8). Then the turbulent kinetic energy density becomes smaller and breaks up into small
pieces at t = 1.42 and 1.64. At these times, the turbulent components of kinetic and magnetic
energies are comparable, and their distributions with height are highly inhomogeneous. We notice
that both energy densities somewhat enhanced at the loop-top region, resulting from the interchange
instabilities of backflows therein (Takasao & Shibata 2016). And the turbulence of kinetic energy is
shown to be the strongest at the loop-top, which is consistent with the observational work of Kontar
et al. (2017); Stores et al. (2021).
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Figure 8. Face-on view of the CME-flare current sheet at given times t = 0.52, 0.96, 1.42. From left to
right for each row, there are the current density |J |, velocities Vy, Vz in the y- and z-directions, and synthetic
EUV image for AIA 131 Å. The black solid lines in the first column are the PX-lines. Note that |J |, Vy, Vz

are averaged over the LOS for x ∈ [−0.1, 0.1].
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Figure 9. Distributions of the turbulent kinetic and magnetic energy density at different evolution times
t = 0.96, 1.42 and 1.64.

Additionally, it is worthwhile to quantify the anisotropy of turbulence at different heights of the
CS. By picking up the simulation data at t = 1.42 (see Figure 1), we select four cubic boxes A-D
in four specific regions: in the flare loops, close to the PX, far above the PX and under the CME.
The boxes are defined as A: [−0.2, 0.2]× [−0.2, 0.2]× [0.6, 1], B: [−0.2, 0.2]× [−0.2, 0.2]× [1, 1.4], C:
[−0.2, 0.2]× [−0.2, 0.2]× [1.8, 2.2] and D: [−0.2, 0.2]× [−0.2, 0.2]× [2.8, 3.2] in (x, y, z) coordinates.
Figure 10 shows the average Fourier power spectra obtained from the velocity field for each box
as a function of the wavenumber k, normalized by the characteristic length L. The power spectra
are calculated using 3D Fourier transform (Kirby 2005) and then the spectrum in each direction
is obtained by summing up the power coefficients in the other directions. The associated Fourier
transforms show kinetic structures in the x-, y- and z-directions, respectively. In box A, B and C,
the power in the y- and z-directions show reasonable power law behavior from 100 or 200L−1 to 700
or 800L−1. The slopes are flatter than the dotted lines associated with the x-direction. The power in
the x-direction seems to be curved rather than power law, or to consist of several narrow power law
intervals. Box B pertains to the X-line region where turbulence is strongly driven. It is complicated
by the fact that the CS is narrower than the box, so x-direction power at small k is suppressed. So
the x-direction might not have a clear inertial range, but there is an excess of power on scales of the
roughly CS thickness, which varies with the height z. Box D clearly shows well-developed, isotropic
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turbulence. In this case the slopes in the power law portions at small scales seem to agree with the
range -1.5 to -1.7 expected for Goldreich-Sridhar or Kolmogorov turbulence (Beresnyak 2017). That
turbulence is probably driven by the interaction between the reconnection outflow and the erupted
flux rope, as described in Ye et al. (2021). That could account for the higher overall level of power at
all scales. There has been considerable work on the power law indices and the inner and outer scales
of turbulence in simulations of current sheets (Bárta et al. 2011; Shen et al. 2013; Boldyrev 2006;
Boldyrev & Loureiro 2020; Kowal et al. 2017; Edmondson & Lynch 2017; Zharkova & Xia 2021; Ye
et al. 2019, 2020). Given the limited inertial range and the gradual character of the change in slope
at large wavelengths in our simulations, there is some uncertainty in both the spectral index and the
outer scale.
If the x-direction turbulence in box C has evolved from that in box B, the higher power at large

scales could be partly due to the larger CS thickness far from the X-point. The smaller power at
small scales could result from mergers of islands. It seems too steep to result from cascade to the
dissipation scale. In box A in the flare loops, one could also imagine that the stronger power at
large scales comes about because the CS is thicker. There may be an inertial range with a somewhat
steeper slope than the y- and z-directions. The TS will strongly affect the turbulence, as in Shen
et al. (2018), but the spectra are similar enough to the spectra near the X-line that they may be
strongly influenced by the turbulence advected from above.

A: In the flare loops B: close to the PX C: far above the PX D: under the CME

Figure 10. Fourier power spectra of the velocity in the x−, y− and z−directions for different parts of the
CS as a function of the wavenumber k. The red and black dotted lines in each panel denotes the spectral
slopes in the x- and z-directions for different regions.

Lazarian et al. (2020) suggest that turbulent reconnection process dominates in 3D CS layers.
However, the reconnection mechanisms proceeding in a CME-driven CS remain unclear. We follow
the evolution of the downward blobs for four successive times just after the generation shown by
Figure 11. In panel (a)-(d), the tube-like blobs marked by the black box are generated and move
downward to interact with the flare loop-top. At t = 1.38 in panel (e), two separate plasmoids are
generated and recognized by unenclosed and highly twisted magnetic field lines. By plotting the
field lines in different colors, we can observe the magnetic structures of blobs more clearly. Then at
t = 1.40 in panel (f), they begin to merge into a bigger plasmoid by changing the connectivity of
the field lines, i.e. magnetic reconnection. This process of plasmoid coalescence is totally different
from that in 2D, which yields a transverse (horizontal) CS of opposite current density between the
mergers (Bárta et al. 2011). The kinking of the plasmoid can also happen in the middle by obtaining
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extra twist turns. At t = 1.42, the big plasmoid starts to collide with the flare loop-top, and is split
into two separate plasmoids. The lower plasmoid loses its twist consecutively at one end during the
collision, and the annihilation process of the plasmoid is likely to be related to turbulent reconnection
occurring at the loop-top region. Lastly at t = 1.44, the rest of the lower plasmoid also falls to the
flare loops with two ends attached to the loop-top. The 3D complex structures and processes of
plasmoids naturally provide multiple reconnection sites when merging into the flare loops.
On the other hand, we show the evolution of a blob moving upwards from t = 1.56 to t = 1.64 in

Figure 12. In panel (a)-(c), a blob of ’U’ shape leaves the PX-line with a speed of about 1285 km/s
and becomes eventually messed up far away from the PX-line in a short time. Regarding the field
lines in panel (d), the blob is highly twisted in the center at t = 1.56, which can be identified as a
plasmoid. Then at t = 1.60 in panel (e), the plasmoid swells while rising due to the low gas pressure
at higher altitudes, and the turns of the flux tube are reduced. Later at t = 1.64 in panel (f), the
plasmoid only has 2 turns left at its two sides, and evolves gradually into a set of magnetic lines in a
’W’ shape accompanied by SSs in various directions. This is to say, upward plasmoids are generated
due to tearing instabilities, and evolve into the stochastic meandering of magnetic field lines (i.e.
turbulence) in a short time, which induces a strong violation of magnetic flux freezing and a rapid
energy dissipation (Eyink et al. 2013). Hence, the blob-like structures often observed in the flare CS
(Lin et al. 2005; Cheng et al. 2018) are not necessarily plasmoids, but instead turbulent post-plasmoid
structures, because they were either well-developed plasmoids or merging/tearing magnetic islands.
Their properties could be much different from other turbulence (e.g., around the PX region). Some
of the blob-like structures seen in the flare CS have much different ionization states than the rest
of the CS, for instance the ones seen in C III and O VI lines in the work of Ciaravella & Raymond
(2008). Those probably are separate plasmoids. However, the ones seen in white light could be either
plasmoids or turbulent features.
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(a) t = 1.38 (b) t = 1.40 (c) t = 1.42 (d) t = 1.44

(e) t = 1.38 (f) t = 1.40 (g) t = 1.42 (h) t = 1.44

Figure 11. Detailed evolution of the downward blobs from t = 1.38 to t = 1.44. (a)-(d) Structures of the
blobs shown by the current isosurface with value |J | = 50 colored by the velocity along the z-direction Vz

at the successive times. (e)-(h) 3D magnetic structures of the blob. Note that the colors for the magnetic
field lines are used to better display the different lines.
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(a) t = 1.56 (b) t = 1.60 (c) t = 1.64

(d) t = 1.56 (e) t = 1.60 (f) t = 1.64

Figure 12. Detailed evolution of an anti-sunward blob from t = 1.56 to t = 1.64. The physical terms are
the same as Figure 11.

As discussed by Jiang et al. (2021), the turbulent structures of CS layers become more complex in
higher resolution computations. When the CME system evolves into a sufficiently turbulent stage,
magnetic reconnection in the CS proceeds in a more complicated way rather than only Sweet-Parker
or Petschek type. From our simulations, the downward plasmoids can keep the twisted shape until the
annihilation at the flare loop-top, while many upward plasmoids turn into the turbulent post-plasmoid
structures before arriving at the bottom of the FR. We can thus infer that turbulent reconnection
dominates in the upper CS in 3D while plasmoid reconnection only dominates in the lower CS.

4. CONCLUSION AND DISCUSSION

Plasmoid reconnection plays a governing role in the 2D magnetized plasma, and the dissipation
scale, spectral properties and energy conversion process in the large-scale CS are exhaustively studied
by theoretical and numerical work (Lin et al. 2007; Shen et al. 2011; Ye et al. 2019, 2020; Zhang
et al. 2022). In the realistic 3D plate-like CS formed in a solar eruption (Lin et al. 2002), the CS
is highly confined by the reconnection inflows, so is the turbulence inside. However, the evolution
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of the confined turbulence in the CME-flare CS remains rarely reported in 3D. Aiming on this, we
have performed full 3D MHD simulations for a moderate CME based on the analytical solution of
Titov & Démoulin (1999) in the gravitationally stratified atmosphere. More details are revisited and
reported in the 3D view as follows:

(1) Two runs with and without thermal conduction successfully reproduce the erupted FR with
the propagation speed over 300 km/s. The magnetic energy of the initial system converts into
the kinetic and thermal energies, between which the kinetic energy dominates in the entire
simulation time.

(2) A plane-like CS above the flare develops and deflects following the FR motion. Many blobs
in different shapes are generated in the CS due to tearing and plasmoid instabilities, and they
undergo the splitting, merging and kinking processes in a more complex way than 2D cases.
The plasma in the CS is mainly heated by the adiabatic and numerical viscous terms, and
thermal conduction is the dominant factor that balances the energy inside the CS. Accordingly,
the temperature of the CS reaches about 20 MK, and the range of temperatures is relatively
narrow.

(3) The reconnection rate decreases from a value larger than 0.1 in the impulsive phase, then
oscillates and decays at the same time, which is consistent with the 2011 December 25 CME
observed by Song et al. (2018). And the generation of plasmoids in the CS gives rise to a
higher reconnection rate in local area and the local rates along the PX-line are enhanced by
turbulence with different amplitudes depending on the location of plasmoids.

(4) The reconnection outflows are highly nonuniform in the 3D CS as turbulence develops, which
strongly disrupt the height of the PX-line. From the face-on view, the finger-like structures of
SADs can be seen above the post-flare loops in AIA 131Å, which confirm the main results of
Shen et al. (2022) in a more self-consistent way. Moreover, the blobs are slightly brighter than
the background CS fan in AIA 131Å, which might extend the spikes of SADs to a higher place
above the loop-top. It means that the moving blobs can also be a part of SADs.

(5) To analyze spatially the turbulent features of the CS, the 3D Fourier transform is performed
on the velocity fields at t = 1.42. The width and elongation of the CS might vary with height,
showing the complex geometry of the 3D CS and turbulence. The spectra surprisingly have
a significant variation either at different heights of the CS or in different directions, given the
limited inertial range.

(6) The PX-line is located always close to the flare loops and separates the CS into two parts, caus-
ing the energy partition to be asymmetric. The annihilation processes of plasmoids are different
in two bi-directional reconnection outflows. Indeed, the upward plasmoids turn into stochastic
magnetic field lines in a short time after the generation, while the downward plasmoids keep
the twisted field lines until their disappearance at the flare loop-top. So the sunward blob-like
structures are definitely plasmoids, while the anti-sunward ones often found in observations
(Lin et al. 2005; Cheng et al. 2018) are not necessarily identified as plasmoids, but instead
turbulent post-plasmoid structures. That is to say, as the CS develops long enough, the plas-
moid reconnection dominates in the lower CS, and the turbulent reconnection dominates in the
upper CS.
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In the work of Kowal et al. (2020); Lazarian et al. (2020), they reported that the plasmoid instability
is only important for the initial stage of reconnection in presence of 3D homogeneous turbulence. But
in our numerical work, various reconnection processes proceed simultaneously during the eruption
process, in which plasmoid reconnection plays a key role for the lower CS. However, a precise calcu-
lation of the spectral slopes with respect to turbulence is still lacking due to the limited resolution in
local place. A 3D high-resolution simulation of sufficiently large Lundquist number (S = 105 − 106)
for a solar flare will be performed in the future to determine the dissipation scale and CS thickness .
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APPENDIX

EFFECT OF THERMAL CONDUCTION

This section is devoted to comparing the models without and with thermal conduction accomplished
by our 3D MHD simulations, namely Run A and Run B listed in table 1. In Run B, the energy
equation is solved with the parallel and perpendicular heat conduction formalized by

FC = −κ||(∇T · B̂)B̂− κ⊥(∇T − (∇T · B̂)B̂), (1)

where κ|| = 8 × 10−7 T
7/2
0

ρ0L0v3A
T 5/2 and κ⊥ = 4 × 10−10 n2

0

B2
0T

3
0

ρ2

B2T 3κ||. The heat flux can saturate when

temperature gradients become extremely steep, and is limited by the saturated flux suggested by
Cowie & McKee (1977):

FC,sat = 5ϕρc3iso, (2)

where ciso is the isothermal sound speed, and ϕ = 1.1 for the fully ionized gas.
Figure 13 plots the density, temperature and current normal to plane for the xz-plane at the center

(y = 0) at t = 1.58 for different runs. At this time, the CSs for Run A and B have already developed
thin and long enough to let the instabilities take place. Blobs can be seen from the current density
for both Runs, in which Run B shows less symmetry than the other. The density inside the CS and
blobs is even lower than the background for Run A, while the CS and blobs are denser places for
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Run B. The temperature along the CS ranges between 3.6 and 17 MK for Run B, and the super
hot structures (> 10 MK) are mainly in the region above the flare loops. For Run A, the maximum
temperature reaches 200 MK along the CS, and all the flare loops have the temperature exceeding
20 MK. As a result, thermal conduction is important to balance the energy inside the CS and yields
the more realistic density and temperature distributions to compare with the observations. Together
with Figure 6 and 7, thermal conduction is shown to be a dominating factor for the heat transport
when the plasma is heated in the solar eruption.

Figure 13. Log of density (first column), temperature (second column) and current normal to plane for
the xz-plane at the center (y = 0) at t = 1.58. (a) Run A; (b) Run B.

Software: MPI-AMRVAC
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